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ABSTRACT

In this paper we prove the existence of one-sided filters, for spectral Fourier approxima-

tions of discontinuous functions, which can recover spectral accuracy up to the discontinuity

from one side. We also use a least square procedure to construct such a filter and test it on

several discontinuous functions numerically.
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1 Introduction

A spectral Fourier approximation for a 27r periodic function u(x) is

N

UN(X) = e (1.1)
k=-N

where the Fourier coefficients -&k are defined by

k = 1 fu(x)e-'xdx (1.2)

for Fourier Galerkin, and by

1 2N 27rj
y- 2NF+ 1 u(xj)e-•ki, xj - 2N + 1 (1.3)

for Fourier collocation. Spectral methods are well-known for their high accuracy in the ap-

proximation of smooth functions and in solving partial differential equations with smooth

solutions [3], [2]. For a discontinuous function, however, unmodulated spectral approxima-

tion produces Gibbs oscillations and yields first order accuracy even in the smooth region

[3]. The good news is that, even if the accuracy is poor in the point-wise sense, it is still

excellent for the moments [4]:

Lemma 1.1 If u(x) E L2[0,27r] and UN(X) is its Fourier Galerkin sum (1.1)-(1.2), then

for any 27r periodic, function v(x) E C', we have

[o2W <N• )v • d IIVC')I 2 1L 2 s

((U(X) - UN(x))v(x)dx- N II Vs 1 (1.4)

Proof: By the orthogonality of trigonometric polynomials, we have

fo2w(UX)- UN(X))v(x)dx 1 '102 (u(X) - UN(X))(V(3.) - VN(X))dX

• 1I•,l-I21v- VNIIL2

Integration by parts yields
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v(x)ekdx (-ik) v()(x)e--k'dx

We then have

11V -VNJII,2 =~ '2ikl < 1NS,),._
Ikl>N Ik->N I

0

Lemma 1.1 implies that the spectral approximation uN(x) does indeed contain the in-

formation of u(x) by preserving accurately the moments of u(x) against any C- functions.

Various filters are designed in the literature to extract this information. The early work in

this direction includes [8] by Majda, McDonough and Osher and [7] by Kreiss and Oliger.

The filters, in the phase space, are of the form

N

f(X) = 1 Nf e' (1.5)
k=-N

where ak = N are real numbers, which decay smoothly from i to 0 when IkI goes from 0

to N. The filter (1.5) is also equivalent to a convolution in the physical space

uN(r) = UN * KN(X) = - j uN(y)KN(x -- y)dy (1.6)

with a kernal KN(x) defined by

N

KN(x) = E ,N 6eI (1.7)
k=-N

Vandeven [10] studied this type of filters in more detail. He proved the following result,

which we will use in Section 2. For simplicity of presentations and without loss of generality,

we assume the function u(x) has only one discontinuity located at x = 0, i.e., u(x) is smooth

but not periodic over [0, 27r).
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Lemma 1.2 (Vandeven) If u(x) is an analytic but not periodic function in [0,2W), then

for any 0 < c < 1, the filtered Fourier sum ui,(x) defined by (1.5) with

Uk = 1 • (2P - 1)! k/N[t(1 _t)]P-'dt, p = Ni (1.8)

satisfies the following error estimates:

NO
max IU( -) •-(x)1 (1.9)wr < <- Wr - (CNI)Nf

where C and f3 are constants independent of N.

0

Similar results were also obtained in Gottlieb and Tadmor [4], by directly constructing

the filter kernel KN(x) in (1.6).

In this paper, we will use C or C for a generic constant independent of N, which may be

different in different locations.

Lemma 1.2 establishes the spectral convergence of the filtered Fourier sum (1.5) to the

function u(x), in a distance N away from the discontinuity x = 0 (mod 27r). If u(x)

is not piecewise analytic but piecewise Cr, similar estimates can be obtained for algebraic

convergence.

The choice of akN in (1.8) is not unique. In practice, exponential filter of the form

ak = e•-(W)2P (1.10)

is often used due to its simplicity and good numerical results. Here 2p is the order of the

filter and can be chosen depending on N., a is a constant chosen so that e-*, the filter for

the last mode, is machine zero. Other frequently used filters include the raised cosine filter

and the Gottlieb-Tadmor filter [4]. We refer the readers to Kopriva [6] for the definition and

an extensive comparison of various filters in practical calculations.
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All of the filters mentioned above are two-sided filters. That is, a two-sided region around

the discontinuity has to be excluded in the error estimates. See for example (1.9). This is

expected since one uses a symmetric kernel KN(x) in (1.6), as a result of using real numbers

akN = aN in (1.5). The Gibbs oscillation is still present in the filtered sum ?fN(x) near the

discontinuity, see Figure 1. This is usually unacceptable for solving nonlinear partial differ-

ential equations since these oscillations may eventually pollute the smooth regions and/or

trigger nonlinear instability. In [1], we proposed a way to overcome this difficulty by intro-

ducing non-smooth functions (saw-tooth functions) into the basis of trigonometric functions.

It would be nice, however, if one could work within the trigonometric polynomial basis and

use filters to completely remove the Gibbs oscillations and to obtain uniform convergence up

to the discontinuity. This is the motivation for the one-sided filters discussed in this paper.

We refer the readers to Mock and Lax [9] for the early work in this direction.

In Section 2 we prove the existence of one-sided filters, i.e., we prove the existence of

complex numbers a , such that for any analytic but not periodic function u(x) in [0, 27r),

the filtered Fourier sum (1.5) satisfies a uniform error estimate

max IU(x) - 'UN(x)I < (CN})Ni (1.11)
O<Z<x 

2

where

2
XR = 27r - 2 (1.12)

N'l-

and (C and P are again constants independent of N. This filter is naturally labelled "right-

sided" filters since it can recover the spectral accuracy up to the discontinuity x = 0 from

the right. A symmetry consideration leads to the "left-sided" filters by taking the conjugate

of the complex numbers a' .

The proof in Section 2 is constructive. However, the filters obtained that way can not

be satisfactorily applied in actual computations unless N is extremely large. For a practical

range of N between 8 and 32 (16 to 64 grid points for collocation), we try to find a better
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one-sided filter through a ieast-square procedure described in Section 3. Several numerical

examples are also provided in that section.

We point out that the one-sided filters discussed in this paper are ueither unique nor

necessarily optimal in practical calculations. Work is under way to explore the construction

of one-sided filters directly in the physical space (1.6). A systemetic investigation about

one-sided filters in the phase space, similar to the approach used in [10], is also under

consideration.

2 Existence of One-Sided Filters

The main result in this section is the following theorem:

Theorem 2.1 If u(x) is an analytic (but not periodic) function in [0, 27r), then for any

0 < c < 4, the one-sided filter defined by

'0  N S ( (-l)l+letll (2.1)

where

A 1-, m = N1 (2.2)

and cTjN is the Vandeven two-sided filter defined by (1.8), produces a filtered Fourier sum

(1.5) satisfying

max Iu(x) - UN(x)I < (2.3)0<=<•R -(CNL)Nf

where xR is given by (1.12), C and P3 are constants independent of N.

Proof: We have, by (2.1) and (1.5),

N N (
eN(N) 7 (-1)l+1etktf '•

k=-N /=1
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M (-1)1+¾sUIT(X + lA)

= M (_1)+1u(x + IA) + El (2.4)

where E1 -- (7) (-l)'+1(u4jT(x + IA) - u(x + IA)), and

N

UiT(X)= '•TN i (2.5)
k=-N

is the two-sided filtered Fourier sum. By (2.2) and Lemma 1.2, El is small whenever 0 <

x • xR, i.e., whenever < x + IA < 2-r - 1 for 1 < I < m:

iE15n ( \m NO =2 NO NO- C

E l • ~(C ,7§)N} (CN-)N- = (N)N c' C =

On the other hand, by Newton's formula, the sum on the last line of (2.4) satisfies, for

some x < < x + mA,

n ( 7) (-1)'+lu(x + IA) = u(x) - u(m)()-A)m

Since we assume u(x) is analytic in [0, 27r), we have, for some p > 0,

IUC•)(X)I: < M(P)M-

We then have, by (2.2) and the Stirling's formula lirn•_..• M" 1,rn!e - -

Iu(m)(t/Ain :5 Cm! < _Nis Nfa

I('~)( ' < (pN-.e)i - (CN")Nt (CN2)N'

where the last inequality is valid because e < This completes the proof.

0

Remark (1) The filter (2.1) is based on the following simple idea: since the two-sided filtered

Fourier sum uivT(x) in (2.5) is a good approximation to u(x) in a region A away from the
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discontinuity, we can use extrapolations from points inside, this region to approximate points

outside of it. The right-sided filtered Fourier sum uif(x) based on (2.1) is just such an

.g (x). In practice, this simple, equally spaced extrapolation may not

be the best. One would expect Chebyshev extrapolations to do a better job.

(2) A left-sided filter is obtained by taking the complex conjugate of Nf in (2.1). The

proof follows the same lines.

3 Efficient One-Sided Filters and Numerical Exam-
ples

The one-sided filters described in Section 2 are good asymptotically, but a very large N is

needed in order for m in (2.2) to be of reasonable size. It is our experience that asymptotically

correct choices are often not necessarily optimal for small N. We thus use a least square

procedure, described below, with the objective of obtaining more efficient one-sided filters

for a practical range of N between 8 and 32 (between 16 and 64 grid points for collocation):

Least Square Procedure: We make an ansaze

{ TN ()QykŽ
N7 = k (3.1)a k < 0

-k<O

where the weight function w(t) is defined by

w(t) = e T1--•t (3.2)

,jN is the Vandeven two-sided filter defined by (1.8) with a parameter p, and q(t) E PF, the

collection of all polynomials of degree at most j, with complex coefficients, defined on [0, 11.

The right-sided Lter ok' is then defined by taking the following minimum:

R ,A

min E 1 [(X')'N(x) - X, 2 dx (3.3)
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where A is a parameter between 0 and 27r, and (x')O'(x) is the filtered Fourier sum (1.5),

using the filter (3.1), of the function u(x) = xr.

0

The parameters involved in the Least Square Procedure are p for the order of accuracy

of the two-sided filter (1.8), s for the degree of polynomials q(t) in (3.1), R for the number of

terms in the summation (3.3), and A in (3.3) for the domain of integration. The implemen-

tation of the minimization (3.3) involves the choice of a basis for P. (we use a Chebyshev

basis over [0, 1]) and the solution of the resulting linear system.

The condition arNk = N is imposed in (3.1) in order to get a real kernel in (1.7) or,

equivalently, to get a real filtered Fourier sum (1.5) for a real function u(x). The exponential

weight function (3.2) is used so that the term added to the two-sided filter arln will not

destroy the accuracy (see [10] for details of the relation between properties of ak and the

accuracy of the filters). The minimization (3.3) is based upon the assumption that the right-

sided filtered Fourier sums for u(x) = x', with 1 < r < R, should be uniformly accurate in

the interval [0, A]. We have also tested the procedure by replacing x' in (3.3) by the r-th

order Chebyshev polynomial T,(x), obtaining similar results.

A crucial issue for the success of this approach is the sensitivity of the filters obtained

with respect to the paramters p, s, R and A. According to the experience for two-sided

filters, p should be chosen related to N. One could also try the (very costly) procedure of

minimization over some of those paramters in certain ranges. The filter might be expected

to work well for polynomials because of the choice u(x) = x' in the minimization (3.3) but

must be extensively tested for other functions.

We perform numerical experiments using different parameters p, S, R, A to get the filters,

then testing them on a non-polynomial function

u(x) = cos(l.5x) x E [0,27r) (3.4)
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Since we enforce 27r periodicity, this function and all its derivatives are discontin,,,ous at

x = 0 (mod 27r). We have experimented with p between 3 and 15 depending on the size

of N (the choice is based on our experience with two-sided filters). It turns out that the

result is most sensative to the choice of s and the optimal s increases rather rapidly with

N. This indicates that the choice for the polynomial space P. or the exponential weight

function in (3.2) may not be adequate for large N. It also limits the size of N we can use in

this approach since the resulting linear system, which we solve by using a routine in IMSL,

becomes ill-conditioned for large s. However, the result seems not very sensative to the

choice of R (we have tried 4 < R < 15) and A (bounded away from 0 and 27r),

We now show the results obtained for N = 8 with s = 2, p = 3, R = 5 and A = 7r; for

N = 16 with s = 5, p = 5, R = 5 and A = 7r;' and for N = 32 with s = 18, p = 6, R = 6 and

A = 7r, in Figures 2 to 6.

In Figure 2, we plot the filter ahN for its real and imaginary parts. No special pattern can

be observed. In Figure 3, we plot the filter ak' for its magnitudes and arguments. Clearly it

shows a straight line for the arguments immediately after the first few modes. This interesting

phenomena can be loosely explained in the following way: A straight line for the arguments

corresponds to a pure shifting for the kernel (1.7). It makes the kernel non-symmetric around

zero and mainly supported in one-side, allowing for one-sided recovery of accuracies., For the

first few modes the arguments have to be close to zero to ensure accuracy of the filter for

the low modes.

In Figure 4, we plot the filter kernels (1.7) in the physical space. We can see that they

are indeed one-sided approximate 6 functions, i.e., they are supported mainly to the left side

of the discontinuity 0 (mod 27r).,

In Figure 5, we plot the one-sided filtered Fourier sum (1.5), using plus signs, against

the exact solution (3.4) (shifted by 7r to show more clearly the discontinuity), with N = 16.

Each point is either left-side filtered or right-side filtered according to which side it is closer

to the discontinuity, we can clearly see the advantage of using one-sided filters in getting
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accurate, non-oscillatory results.

Finally, in Figure 6, we plot the errors of the one-sided filtered Fourier sum (1.5) from

the exact function (3.4), with N = 8,16, 32, on a logrithm scale. Again, each point is either

left-side filtered or right-side filtered according to which side it is closer to the discontinuity.

We can see the uniform convergence up to the discontinuity and a faster than algebraic

convergence for the one-sided filtered Fourier sums.

The same filter is also used to other functions such as u(x) = ecc8(1'5x) u(x) = j

etc., with similar results. We would also like to point out that even if we have restricted

our discussion to the Galerkin method (1.2), the collocatinn case (1.3) can be analysed in a

similar fashion with some assumptions on the location of the discontinuity between the grids

(say, in the middle of two grids). We have performed the same numerical experiments -

collocation method, and have obtained similar results. Details are omitted here.

The main potential of one-sided filters is in solving hyperbolic partial differential equa-

tions with discontinuous solutions., They can either be used during the final stage of post-

processing to recover accurate point values of the numerical solution near the discontinuity,

or used in each time step to obtain non-oscillatory numerical solutions. In order to per-

form the latter one might obtain three Fourier sums, namely right-sided filtered UNR(M),

two-sided filtered "T(x) and left-sided filtered "L(x), at each point (this only involves two

additional FFT's if implemented in the phase space (1.5)), and use some local criterion to

decide whether there is a discontinuity nearby, and if yes, to which side, then to decide which

filtered solution to use. This is very similar to the ENO idea in finite difference [5], and is

currently under investigation.
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Figure 1: The sawtooth function (background solid line); the Fourier sum (1.1) with N = 16

(solid line) and the two-sided filtered Fourier sum using (1.8) with p = 6 (dashed line). We

can see that the two-sided filter removes oscillations away from the discontinuity but still

leaves over- and under-shoots near the discontinuity.
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Figure 2: The right-sided filters ouk: the real parts Re(aN) (solid lines) and the imaginary

parts Im(ok) (dashed lines), for (a) N = 8; (b) N = 16 and (c) N 32.
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Figure 2(b)
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Figure 3." The right-sided filters a : the magnitudes la'I (solid lines) and the argumeihts

Arg(ak) (dashed lines), for (a) N = 8; (b) N = 16 and (c) N = 32.

Figure 3(a)

4 I

Figure 3(b)

8I

-4/ -

6 / II

/!

//

I IS

0 5 10 15

14



Figure 3(c)
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Figure 4: The kernels KN(x) in (1.7) for the right-sided filters N:

ak. (a) N=8; (b) N=16

and (c) N = 32.
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Figure 4(b)
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Figure 5: The function (3.4) shifted by 7r (solid line) and the one-sided filtered Fourier sum

(the plus signs), with N = 16.
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Figure 6: The errors Iu(x)-tioT(x) of the one-sided filtered Fourier sum to (3.4), in logrithm

scales, for N = 8, 16, 32.
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